3.5.64 \(\int \cos ^4(c+d x) (a+b \sec (c+d x))^2 \, dx\) [464]

Optimal. Leaf size=101 \[ \frac {1}{8} \left (3 a^2+4 b^2\right ) x+\frac {2 a b \sin (c+d x)}{d}+\frac {\left (3 a^2+4 b^2\right ) \cos (c+d x) \sin (c+d x)}{8 d}+\frac {a^2 \cos ^3(c+d x) \sin (c+d x)}{4 d}-\frac {2 a b \sin ^3(c+d x)}{3 d} \]

[Out]

1/8*(3*a^2+4*b^2)*x+2*a*b*sin(d*x+c)/d+1/8*(3*a^2+4*b^2)*cos(d*x+c)*sin(d*x+c)/d+1/4*a^2*cos(d*x+c)^3*sin(d*x+
c)/d-2/3*a*b*sin(d*x+c)^3/d

________________________________________________________________________________________

Rubi [A]
time = 0.07, antiderivative size = 101, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.238, Rules used = {3873, 2713, 4130, 2715, 8} \begin {gather*} \frac {\left (3 a^2+4 b^2\right ) \sin (c+d x) \cos (c+d x)}{8 d}+\frac {1}{8} x \left (3 a^2+4 b^2\right )+\frac {a^2 \sin (c+d x) \cos ^3(c+d x)}{4 d}-\frac {2 a b \sin ^3(c+d x)}{3 d}+\frac {2 a b \sin (c+d x)}{d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^4*(a + b*Sec[c + d*x])^2,x]

[Out]

((3*a^2 + 4*b^2)*x)/8 + (2*a*b*Sin[c + d*x])/d + ((3*a^2 + 4*b^2)*Cos[c + d*x]*Sin[c + d*x])/(8*d) + (a^2*Cos[
c + d*x]^3*Sin[c + d*x])/(4*d) - (2*a*b*Sin[c + d*x]^3)/(3*d)

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 2713

Int[sin[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> Dist[-d^(-1), Subst[Int[Expand[(1 - x^2)^((n - 1)/2), x], x], x
, Cos[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[(n - 1)/2, 0]

Rule 2715

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Sin[c + d*x])^(n - 1)/(d*n))
, x] + Dist[b^2*((n - 1)/n), Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integ
erQ[2*n]

Rule 3873

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^2, x_Symbol] :> Dist[2*a*(b/d
), Int[(d*Csc[e + f*x])^(n + 1), x], x] + Int[(d*Csc[e + f*x])^n*(a^2 + b^2*Csc[e + f*x]^2), x] /; FreeQ[{a, b
, d, e, f, n}, x]

Rule 4130

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) + (A_)), x_Symbol] :> Simp[A*Cot[e
+ f*x]*((b*Csc[e + f*x])^m/(f*m)), x] + Dist[(C*m + A*(m + 1))/(b^2*m), Int[(b*Csc[e + f*x])^(m + 2), x], x] /
; FreeQ[{b, e, f, A, C}, x] && NeQ[C*m + A*(m + 1), 0] && LeQ[m, -1]

Rubi steps

\begin {align*} \int \cos ^4(c+d x) (a+b \sec (c+d x))^2 \, dx &=(2 a b) \int \cos ^3(c+d x) \, dx+\int \cos ^4(c+d x) \left (a^2+b^2 \sec ^2(c+d x)\right ) \, dx\\ &=\frac {a^2 \cos ^3(c+d x) \sin (c+d x)}{4 d}+\frac {1}{4} \left (3 a^2+4 b^2\right ) \int \cos ^2(c+d x) \, dx-\frac {(2 a b) \text {Subst}\left (\int \left (1-x^2\right ) \, dx,x,-\sin (c+d x)\right )}{d}\\ &=\frac {2 a b \sin (c+d x)}{d}+\frac {\left (3 a^2+4 b^2\right ) \cos (c+d x) \sin (c+d x)}{8 d}+\frac {a^2 \cos ^3(c+d x) \sin (c+d x)}{4 d}-\frac {2 a b \sin ^3(c+d x)}{3 d}+\frac {1}{8} \left (3 a^2+4 b^2\right ) \int 1 \, dx\\ &=\frac {1}{8} \left (3 a^2+4 b^2\right ) x+\frac {2 a b \sin (c+d x)}{d}+\frac {\left (3 a^2+4 b^2\right ) \cos (c+d x) \sin (c+d x)}{8 d}+\frac {a^2 \cos ^3(c+d x) \sin (c+d x)}{4 d}-\frac {2 a b \sin ^3(c+d x)}{3 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.19, size = 86, normalized size = 0.85 \begin {gather*} \frac {36 a^2 c+48 b^2 c+36 a^2 d x+48 b^2 d x+192 a b \sin (c+d x)-64 a b \sin ^3(c+d x)+24 \left (a^2+b^2\right ) \sin (2 (c+d x))+3 a^2 \sin (4 (c+d x))}{96 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^4*(a + b*Sec[c + d*x])^2,x]

[Out]

(36*a^2*c + 48*b^2*c + 36*a^2*d*x + 48*b^2*d*x + 192*a*b*Sin[c + d*x] - 64*a*b*Sin[c + d*x]^3 + 24*(a^2 + b^2)
*Sin[2*(c + d*x)] + 3*a^2*Sin[4*(c + d*x)])/(96*d)

________________________________________________________________________________________

Maple [A]
time = 0.12, size = 89, normalized size = 0.88

method result size
derivativedivides \(\frac {a^{2} \left (\frac {\left (\cos ^{3}\left (d x +c \right )+\frac {3 \cos \left (d x +c \right )}{2}\right ) \sin \left (d x +c \right )}{4}+\frac {3 d x}{8}+\frac {3 c}{8}\right )+\frac {2 b a \left (2+\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )}{3}+b^{2} \left (\frac {\cos \left (d x +c \right ) \sin \left (d x +c \right )}{2}+\frac {d x}{2}+\frac {c}{2}\right )}{d}\) \(89\)
default \(\frac {a^{2} \left (\frac {\left (\cos ^{3}\left (d x +c \right )+\frac {3 \cos \left (d x +c \right )}{2}\right ) \sin \left (d x +c \right )}{4}+\frac {3 d x}{8}+\frac {3 c}{8}\right )+\frac {2 b a \left (2+\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )}{3}+b^{2} \left (\frac {\cos \left (d x +c \right ) \sin \left (d x +c \right )}{2}+\frac {d x}{2}+\frac {c}{2}\right )}{d}\) \(89\)
risch \(\frac {3 a^{2} x}{8}+\frac {x \,b^{2}}{2}+\frac {3 a b \sin \left (d x +c \right )}{2 d}+\frac {a^{2} \sin \left (4 d x +4 c \right )}{32 d}+\frac {b a \sin \left (3 d x +3 c \right )}{6 d}+\frac {a^{2} \sin \left (2 d x +2 c \right )}{4 d}+\frac {\sin \left (2 d x +2 c \right ) b^{2}}{4 d}\) \(94\)
norman \(\frac {\left (-\frac {3 a^{2}}{8}-\frac {b^{2}}{2}\right ) x +\left (-\frac {9 a^{2}}{8}-\frac {3 b^{2}}{2}\right ) x \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (-\frac {3 a^{2}}{4}-b^{2}\right ) x \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (\frac {3 a^{2}}{4}+b^{2}\right ) x \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (\frac {3 a^{2}}{8}+\frac {b^{2}}{2}\right ) x \left (\tan ^{10}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\left (\frac {9 a^{2}}{8}+\frac {3 b^{2}}{2}\right ) x \left (\tan ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-\frac {\left (3 a^{2}-4 b^{2}\right ) \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2 d}-\frac {\left (5 a^{2}-16 b a +4 b^{2}\right ) \left (\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{4 d}-\frac {\left (5 a^{2}+16 b a +4 b^{2}\right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{4 d}+\frac {2 a \left (3 a -4 b \right ) \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3 d}+\frac {2 a \left (3 a +4 b \right ) \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3 d}}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{4} \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}\) \(299\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^4*(a+b*sec(d*x+c))^2,x,method=_RETURNVERBOSE)

[Out]

1/d*(a^2*(1/4*(cos(d*x+c)^3+3/2*cos(d*x+c))*sin(d*x+c)+3/8*d*x+3/8*c)+2/3*b*a*(2+cos(d*x+c)^2)*sin(d*x+c)+b^2*
(1/2*cos(d*x+c)*sin(d*x+c)+1/2*d*x+1/2*c))

________________________________________________________________________________________

Maxima [A]
time = 0.26, size = 82, normalized size = 0.81 \begin {gather*} \frac {3 \, {\left (12 \, d x + 12 \, c + \sin \left (4 \, d x + 4 \, c\right ) + 8 \, \sin \left (2 \, d x + 2 \, c\right )\right )} a^{2} - 64 \, {\left (\sin \left (d x + c\right )^{3} - 3 \, \sin \left (d x + c\right )\right )} a b + 24 \, {\left (2 \, d x + 2 \, c + \sin \left (2 \, d x + 2 \, c\right )\right )} b^{2}}{96 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4*(a+b*sec(d*x+c))^2,x, algorithm="maxima")

[Out]

1/96*(3*(12*d*x + 12*c + sin(4*d*x + 4*c) + 8*sin(2*d*x + 2*c))*a^2 - 64*(sin(d*x + c)^3 - 3*sin(d*x + c))*a*b
 + 24*(2*d*x + 2*c + sin(2*d*x + 2*c))*b^2)/d

________________________________________________________________________________________

Fricas [A]
time = 2.13, size = 77, normalized size = 0.76 \begin {gather*} \frac {3 \, {\left (3 \, a^{2} + 4 \, b^{2}\right )} d x + {\left (6 \, a^{2} \cos \left (d x + c\right )^{3} + 16 \, a b \cos \left (d x + c\right )^{2} + 32 \, a b + 3 \, {\left (3 \, a^{2} + 4 \, b^{2}\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{24 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4*(a+b*sec(d*x+c))^2,x, algorithm="fricas")

[Out]

1/24*(3*(3*a^2 + 4*b^2)*d*x + (6*a^2*cos(d*x + c)^3 + 16*a*b*cos(d*x + c)^2 + 32*a*b + 3*(3*a^2 + 4*b^2)*cos(d
*x + c))*sin(d*x + c))/d

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \left (a + b \sec {\left (c + d x \right )}\right )^{2} \cos ^{4}{\left (c + d x \right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**4*(a+b*sec(d*x+c))**2,x)

[Out]

Integral((a + b*sec(c + d*x))**2*cos(c + d*x)**4, x)

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 224 vs. \(2 (93) = 186\).
time = 0.43, size = 224, normalized size = 2.22 \begin {gather*} \frac {3 \, {\left (3 \, a^{2} + 4 \, b^{2}\right )} {\left (d x + c\right )} - \frac {2 \, {\left (15 \, a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} - 48 \, a b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} + 12 \, b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} - 9 \, a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 80 \, a b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 12 \, b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 9 \, a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 80 \, a b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 12 \, b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 15 \, a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 48 \, a b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 12 \, b^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 1\right )}^{4}}}{24 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^4*(a+b*sec(d*x+c))^2,x, algorithm="giac")

[Out]

1/24*(3*(3*a^2 + 4*b^2)*(d*x + c) - 2*(15*a^2*tan(1/2*d*x + 1/2*c)^7 - 48*a*b*tan(1/2*d*x + 1/2*c)^7 + 12*b^2*
tan(1/2*d*x + 1/2*c)^7 - 9*a^2*tan(1/2*d*x + 1/2*c)^5 - 80*a*b*tan(1/2*d*x + 1/2*c)^5 + 12*b^2*tan(1/2*d*x + 1
/2*c)^5 + 9*a^2*tan(1/2*d*x + 1/2*c)^3 - 80*a*b*tan(1/2*d*x + 1/2*c)^3 - 12*b^2*tan(1/2*d*x + 1/2*c)^3 - 15*a^
2*tan(1/2*d*x + 1/2*c) - 48*a*b*tan(1/2*d*x + 1/2*c) - 12*b^2*tan(1/2*d*x + 1/2*c))/(tan(1/2*d*x + 1/2*c)^2 +
1)^4)/d

________________________________________________________________________________________

Mupad [B]
time = 0.87, size = 93, normalized size = 0.92 \begin {gather*} \frac {3\,a^2\,x}{8}+\frac {b^2\,x}{2}+\frac {a^2\,\sin \left (2\,c+2\,d\,x\right )}{4\,d}+\frac {a^2\,\sin \left (4\,c+4\,d\,x\right )}{32\,d}+\frac {b^2\,\sin \left (2\,c+2\,d\,x\right )}{4\,d}+\frac {3\,a\,b\,\sin \left (c+d\,x\right )}{2\,d}+\frac {a\,b\,\sin \left (3\,c+3\,d\,x\right )}{6\,d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)^4*(a + b/cos(c + d*x))^2,x)

[Out]

(3*a^2*x)/8 + (b^2*x)/2 + (a^2*sin(2*c + 2*d*x))/(4*d) + (a^2*sin(4*c + 4*d*x))/(32*d) + (b^2*sin(2*c + 2*d*x)
)/(4*d) + (3*a*b*sin(c + d*x))/(2*d) + (a*b*sin(3*c + 3*d*x))/(6*d)

________________________________________________________________________________________